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THE DISTANCE BETWEEN CERTAIN 
n-DIMENSIONAL BANACH SPACES* 

BY 

W. J. DAVIS, V. D. MILMAN AND N. TOMCZAK-JAEGERMANN 

ABSTRAC1- 

If E and F are n-dimensional Banach spaces, if E has cotype 2, and if the ball 
of F* has a small number of extreme points, then the Banach-Mazur distance 
d(E, F)<_- C~/nlog n. The techniques lead to the formally stronger result: If E 
and F* have type 2 constants a and b, respectively, then d(E, F) <-_ ~/-n(a + b). 
If E is n-dimensional, the identity map on E, when restricted to a large 
subspace of E, factors through I" with norm C~/n. 

§0. Introduction 

Given Banach  spaces E and F, the B a n a c h - M a z u r  distance be tween them is 

defined by d(E, F )  = inf{l[ Zll II Z-' l i lT :  E ---> F}. Geometr ical ly ,  this says that,  

for any e > 0 ,  there is a map S:E--->F so that B~CS(B~)C(d (E ,F)+e)Br ,  
where B× denotes  the unit ball of  the space X. If E is an n-dimensional  space, 

the F. John  lemma [12] implies that d(E,l~)<= ~/n. Thus,  for any pair of  

n-d imensional  spaces, d(E, F) <= d(E, l~)d(l£ F) <= n. In the o ther  direction,  it is 

known that d(17, l~)=  ~v/n. Therefore ,  if ,~. denotes  the collection of all 

n-d imensional  Banach  spaces endowed  with the B a n a c h - M a z u r  distance,  we 

have V 'n  =< diam J: ,  <= n. 

O n e  case is comple te ly  settled. Mot ivated  by work  of  Asp lund  [1], W. 

Stromquist  [24] has recently proved that diam ~:2 = 3/2. In fact, he was able to 

show that the B a n a c h - M a z u r  radius of ~T~ is ~/3/2. 

Starting with two papers  of Gurari i ,  Kadec  and Macaev,  distances within 

specific classes of  spaces have been  examined.  In [10] the correc t  asymptot ic  

distance be tween  l~ and l~ were computed .  In [11], an est imate was given for  
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d(lT, E) in the case that E has a symmetric basis. Recall that a basis (e,)?=l is 

symmetric if, for any sequence of scalars, (a~), and any permutation, tr, of 

{1, . . . ,  n}, we have UX a,e, II = IIx I a, I e~,,ll. This direction has been pursued more 

recently in the papers [41 and [28]. What is now known is that there is a universal 
constant, C (on the order of 10), such that d(E, F)<--_ C~v/n(log n) 2 if E and F 

are n-dimensional symmetric spaces. We must point out that the presence of the 

logarithmic factor in this estimate is not known to be necessary. Such factors 

occur again in our estimates, and may simply be by-products of the proofs, rather 

than consequences of reality. 

This sort of investigation has continued in several other special cases. For 

example, if E has a 1-unconditional basis, then the third-named author has 

recently shown that d(l~, E) <-_ CX/n(1 + log n). This result, due to technical 

difficulties, has not yet been extended to the general case of d(E, F) when E and 

F both have 1-unconditional bases. (A basis (e,) is 1-unconditional if I]E a,e, II = 
I[:~[a, le, [1 for  all choices of scalars, (a,).) 

All of the results mentioned above are proved very constructively, and use 

quite specific orthogonal matrices. Somewhat more existential is the basic 

argument in [26]. There it is shown that, asymptotically, d(C~, C~)~ d(l~, l~). 
Here, C~ denotes the Schatten class of operators on IL That is, if T : l~--~ l~, its 

norm in C~ is just (tr(T* T)m) lj". Notice that dim C~ is n 2, so that the estimates 

for d(C~, C~)-(dim C~) TM, for example. 

Before we go on, we need some terminology which we shall employ 
throughout this work. Let X be a Banach space, and let (r,(t)) denote the 

Rademacher functions on [0, 1]. X is said to have type 2 with constant Kt2~(X) 
(respectively cotype 2 with constant Ko~(X)) if 

dr) <<-g'2'(X)  llx, II = , 

( )3 respectively, >- (1/Kt2,(X)) Itx,}l • 

The constants K t2~ and Kt2) are assumed to be the smallest which work. Since, for 

1 <=p <oo, (fllXr,(t)x, II dt) - (fllXr,(t)x, II dt) [131, w e  need not worry too 

much about the norm used on the left-hand side. 

We shall, of course, also need some facts from the theory of operator ideals. 

Most of what we use can be found in [16] or [21] as well as in many of the other 

references cited here. Let (x~)7'=1 CX. Define 

ep (x,) = sup{( E I x*(x,)lP)'/" }1} x* II -- 1, x* E x*}. 



Vol. 39, 1981 DISTANCE BETWEEN BANACH SPACES 3 

An operator, u : X---~ Y, is p-summing if there is a (smallest) constant, 7rg(u), 

such that for all choices of (x,)C X, we have 

The constant, zrp(u), defines a norm, and we always have ,rp(ouw)<= 
Ilollllwll~p(u). In case x and Y are finite dimensional, the space of 1- 

summing operators from X to Y has, as its dual, the space of 00-factorizable 

operators. That is, defining 3,~(u) = infll/3 II I1,  II such that a :  X ~ l®, /3: l®---~ Y 
and u= / 3o t z ,  we have y~(u)=sup{[truvl[1rl(v)=l} and ~-t(u)= 

sup{ltruvl['r~(v)= 1}. Another norm we shall need is 3,2(u). Analogously, 

72(u) = inf II/3 II II ,, II such that a : X ~ / 2 ,  13 :/2 --~ Y and/30 t~ = u. In case u is the 
identity on X, y~(u) is the projection constant of X and 3,2(u) is the distance 

d im X from X to 12 . Finally, we need the nuclear norm. Let u :X---~ Y, where the 

spaces are finite dimensional. Then 

v(u)( i , (u ) )= in f  '~A, [u(x)  ~A,x*(x)y,,A, =0,llx,l l--Ily,  ll--1 • 

This norm is the dual to the operator norm: v(u)= sup{[tr uv J[lloll = 1}. 

In §1, we abandon the symmetry and lattice assumptions above and prove a 

somewhat different sort of distance estimate: If the unit ball of E and unit ball of 

F* both have a small number of extreme points, say less than n ~ for some a, 

then the distance from E to F is bounded by CX/n(1 + log n), where C depends 

only on a above. This result has its roots in [2@ where distance estimates are 

obtained by "unitary factorizations" of operators through Euclidean spaces. In 

[3], Chevet proved an inequality involving "Gaussian factorizations" which 

allows us to extend this result. The idea of using the Chevet theorem in this sort 

of factorization question originated in an early version of the paper by 

Benyamini and Gordon [2]. We appreciate their letting us have a preprint of that 

paper. We are also grateful to G. Pisier for showing us an inequality in Marcus 

and Pisier [18] which relates Gaussian and unitary averages, and hence allows 

the application of the factorization scheme to our problem. The extension 

which occurs is: if E and F are n-dimensional, then d(E,F)<= 
X/n(K(2)(E) + K(2)(F*))C, where C is a universal constant. In case the spaces E 

and F have enough symmetries, this result may be improved by replacing X/n by 

max(d(E,  l~), d(F, i~)). 

The second section contains various results related to this work. For example, 

if E is an arbitrary n-dimensional space, it has an n/10-dimensional subspace 
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whose identity factors through 1". as u o v with II u II II ~ II--< c x /g  ¢c is universal). 

We conclude the second section with estimates of the Levy mean of the norm of 

an n-dimensional space with respect to the F. John ellipsoid. 

§1. Distance questions related to type 2 constants 

The main result of this section is Theorem 1, which says that if E and F are 

n-dimensional, then d ( E, F) <= C X/ n( KC2)( E * ) + Kt2J( F) ). The motivation for 

this result lies in the following proposition, which is a modification of the main 

result of [26]. 

Theorem 1 below is a strengthening of Proposition 1. If B~. has a small 

number, say 2m, of extreme points, then F embeds isometrically into l~. Since l~ 

has type 2 constant on the order of X/log m, so does F. In particular, if m =< n °, 

then F has type 2 with constant smaller than V a  log n. 

PRoeosrrior~ 1. Let dim E = dim F = n, suppose that [ Ext Be [ <= n* and 

I Ext B~.I <= n ~. Then there is a constant C = C(a, ~), not depending on E, F or n, 
such that d(E, F) <-_ C(a,/3)x/n(1 + log n). 

PROOF. Let ~ and ~ denote ellipsoids such that ( l /x /n )~  C Be C ~ and 

C BF C V n  ~. For example, by F. John's lemma, ~ may be taken to be the 

minimal volume ellipsoid containing Be and ~ the maximal volume ellipsoid 

contained in BF, [12]. After an affine transformation, we may as well assume that 

= ~, so that we have (1/~Fn)~ CBe C ~ CBF C x/n~. If we let l" 12 denote the 
Euclidean norm on R" given by this ellipsoid, and denote the resulting Euclidean 

space by H, we consider only maps from E to F of the form E --~ H - ~  H - ~  F. 

Here i and j denote the formal identity maps and u, to be chosen, is a unitary 

operator on H. We have, from above, Iii II--Ilill-- 1 and both IlY-'ll, Iii-'11--< x/~. 
Of course, II u II -- 1 = II u * II. Thus, if w e  set a -~ = i - l o  u * o  j - l ,  w e  have II a - '  II ---- 
n, independent of the choice of u. To estimate the norm of A = j o u o i, we need 

some notation. Let U denote the group of unitary operators on H, and let/ . t  

denote the normalized Haar measure on U. Just as in [26], for any constant a 

and vectors x, y E H having norm 1, a direct calculation shows that 

I~{u E U ll(ux, y)[ _-__ a} < Ce -~12, 

where C is a universal constant (sufficient is C = 4). This sort of estimate is 

convenient for computing IIA I1, since l la II-- max{l(ax,  y'>llx E Extne,  
y'  E Ext Be.}. For x E Ext BE and y '  E Ext B~., then, we have 
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~{u ~ ul l<ux,  y')l>=alxl2ly'12}<=Ce . . . .  ,2. 

For IlxllE = 1 and I l y ' l l - =  1, we have 1 ~ Ix 122 1/N/n and 1 ~ ly'12----1/N/n, 
respectively. In particular, this gives us ~{ull<ux, y')l>-_a}<Ce . . . .  if 

x ~ Ext BE and y '  E Ext B~. Therefore,  we have that 

~{u Ilia II < a}_-> 1 -  C I E x t B E I I E x t B ,  Ie . . . .  . 

For the right-hand side to be positive we simply need I Ext B~I IExtBF-] < 

(1/C)e "~'-. Taking the log of both sides, and recalling the hypothesis, we see that 

we need a log n +/3 log n < na 2 -  log C, so that, in particular for n = 3, it is 

sufficient to have 

a = ( ( a + fl + l°g C) log n ) 

What we have shown is that there is a unitary operator  u so that 

I l A l l = l l ] o u o i ] l < N / a  + ~ + log C~/I°~ n 

and so we have d(U, F) -_ IIA II IIA-'II--- N/a +/3 + log cN/n  log n. This com- 
pletes the proof with C(a,/3)  = N/a + ~ + log C. 

We now proceed to the main result of this section. We need a definition and 

some results from [7]. Let T :  l~---~E, and define 

M T =  ~_, [[Txll2m(dx)/ , i( T) = ~c/nMT. 

If y~ denotes normalized Gaussian measure on l"2, then I(T) = (f,~-II Tx tl~dv~) ''2. 
If (e,) denotes the natural basis for 17, and if (g~) is an independent sequence of 

Gaussian random variables with mean zero and variance 1, then we also have 

l(T) = f° II y~ g, (w) Ze, II 2 dw )~,2. From this last statement, since Gaussian random 

variables can replace Rademacher  functions in the definition of type 2 and 

cotype 2 constants, we see tha t  l (T)  <= g'2 ' (E)(~l l  Ze, [[~),/2 <. K,2,(E)Tr2(T). 

LEMMA 1. Let T:I~---~ E. Then, I(T)<=Kt2)(E)zr2(T*). 

PROOF. Let E * - ~  . . . . .  l® --~ 12 --~ lz be a good 2-nuclear factorization of T* (e.g., 

[21]). That is, ][ v I[ = ]] w ]] = 1 and II A I[ < (1 + e)Tr2(T*), where A(e~) = 8~e~. Thus 

II a II -- (z l  8,12) 1'2. Then ( f  nn Tx l[2dy. )v2 = ( f  [I v * A* w *x 112d3,o)1'2 by [7]. Since 

I1 w*U -- 1, w e  have 



6 w . J .  DAVIS ET AL. Israel J. Math. 

12 \ 1/2 

.< K(2) 2 (2) *ei _-- v*A*e~ =<K 2 

= g'='(E)l la* II < K'2'(E)(1 + 

Since e is arbi trary,  we have the result desired. 

Last,  we need  a lemma well known to many  people .  

LEMMA 2. Let u : l~---~ E such that u(B~ ) is the ellipsoid of maximal volume 
in BE. Then ¢r2(u) = 7r2(u -1) = V'n. 

PROOF. By definition, I1 u II =< 1, so w2(u) _-__ II u l[ ¢r2(l~') = X/n. As in, for  exam- 

ple, [9], [16], there  are positive scalars A~ with E A~ = n and points {x, },%~ C E so 

that IIx, llE=l=llx, ll~.=llu-I(x,)ll. Here  the pairing is given by x , ( x ) =  

(u*x,,u-l(x)). Fur ther ,  for  x E E ,  x=YA,x,(x)x;. Let  {z,}t~.lCE so that  

(Y I(x' ,  z,)]2) ~/2 _-__ IIx'IIE" for each x '  E E * .  We have 

I I ~ 1 

1=] j = l  i =1 j=l 

by the choice  of {zj}. Thus,  by definition, we have ¢r2(u-~)--<_XFn. Since 

t r (u  o u -l) = n,<= ¢r2(u)Tr2(u-~), we see that w2(u) = ¢r2(u -1) = ~ /n  as desired.  

THEOREM 1. Let d im(E)=d im(F)=n .  Then d(E,F)<=c Vn(K(2)(E *) 
+ K(2)(F)), where c is a universal constant. 

PROOF. Let  v:l~---~E and w:l~---~F* have the p roper ty  that v(Bt~) is the 

maximal  vo lume  ellipsoid in BE and w (Bt~) is the maximal  vo lume ellipsoid in 

B~.. We will select a uni tary map,  u, on l~ and set T = (w-~)* o u o (v-l) .  Then  

T -1 = v o u * o w* has no rm -< 1. First we need  a concre te  representa t ion  of T. 

Le t  x;=(v-l)*(e~) and y, = (w-l)*(e,)  for  i =  1 , 2 , - . . ,  n. Then ,  if u = (u,;), we 

have T = Tu = E[ ,~  uqx;®y;. If /z denotes  normal ized  Haa r  measure  on the 

unitary group,  q/,, a recent  result  of Marcus  and Pisier [18, V.2.4] says that  
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where cp depends only on p and {gi~} are independent, N(0, 1) Gaussian random 

variables. Using the inequality due to Chevet, [3], we see that 

= x / ~  

Recall that e:(x ;) = sup,~ll~, (E I(x ;, x)l:)'a, so we get e2(x ;) ---- II v- ' l l .  Similarly, 

e~(Y,)<=l[ w '11-As above, (fll~,g,y, IFdw) ' '~=/((w-l) *) and (fll~,g,x;ll~dw) '/~= 
/((v-l)*). So we have 

(1) ( f~ .  I , T ~ H p ) ' / P ~ { I I v - ' H I ( ( w  ' ) ' )+[Iw-lII l ( (v- ' ) ' )} .  

By Lemma 1, we have l((w-l)*)~K(2)(F)Tr2(w-'), and l ( (v - ' )* )=  < 

Ka'(E*)Tr2(v-'). Using Lemma 2, we get .f~.llzoll~(du)<=f(llv-lllK'~)(F) 
÷llw-'llK'2'(E*)}. Since IIv ~l[=<-~(v-'), etc., we finally get minllZ~ll_- < 

f~o II To II d~ =< c V~(g '-"(E*) + K'~'tF)}, as desired. 

In the proof above, notice that, if the maximal ellipsoid yields II v - '  II = d(E, 1~), 
and II w '11 = d(f ,  iT), then we get the estimate 

d(E, F) <-_ C(Kt2'(E *) + KC-'(f))max(d(X, lT), d( Y,/~)}. 

This situation occurs if E and F have enough symmetries (see, e.g. [9]). 

COROLLARY 1. If dim E = dim F = n, and if E and F have enough symmet- 
ries, then 

d(E, F) <_- C(Kr-)(E *) + K~e)(F))max{d(E, /7), d(F, 17)}. 

This corollary is, in a sense, best possible, due to the following. 

PROPOSITION 2. Let dim(E)  = dim(F)  = n. Then 

d(E, F) >= {(KC-'(E*)KC2'(F))-~/= max{d(E, iT), d(F, /7)}. 

PROOF. It is true that K(2~(E)<-K(2)(E *) and K(2)(F*)_-< K(2)(F). By a result 

of Pisier, [23], if u:F-->E, then T2(u)<~(Kt2)(F*)K(2)(E))3/2[lulI. Let u be 

chosen so that I[u [lllu ~ll = d(E,F). By the Pisier result, u = / 3 o a  where 

a:F----~lT, fl:lT----~E, and II~IIII,~II<-(~)(K,2,(F*)K,i,(E)Y2IluII. We have 

d(17,E)<=ll/31ll[ o,°u 'll. That is, max{d(E,l~),d(F,l~)}<--Ilallll/3llllu-'[I. The 
proof is complete. 
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It may be that the result of Corollary 1 holds in general. That is, 

PROBLEM 1. IS there a constant C so that, if d i m E  = dim F = n ,  then 

d(E, F) <= c(K'2)(E *) + K(2)(F))max{d(E, l~), d(F, l~)}? 

COROLLARY 2. Let dx = d(l~, X)  and let k(X)  be the largest dimension of a 
subspace o[ a Banach space X which is 2-isomorphic to the euclidean space l~. Let 
E and F be n-dimensional Banach spaces. Then 

cdE • dF 
_-< - { ( X / k ( F ) +  k ~ ) (  k X / - ~ ) +  kX/~-F-;))} d(E, F) 

n 

where C is some universal constant. 

PROOf. We have to return to the proof of Theorem 1. First, we use new 

embeddings v : l~---~ E and w : l~--~ F* which give the distances dE and dF. More 

precisely, let 1~dr II x II <= II vx [I --< II x II and 1/ dF II x II < I[ wx II <= II x II. Then, by [6], §2, 
there exists an absolute constant c such that k(E) > cnM~ and k(F*)>-cnM2~ 
(we recall that as before ME = fs"-' I[ VX 112m(dx)). Similarly 

/ M  w" _,\2 
k(E*)>=cn/Mt~')-'~k dE ] and k ( F ) > - _ c n t ~  ) .  

We use all these inequalities to continue inequality (1) (we use the same letter c 

for different universal constants), 

IITull2~(du <-- C{llv-'llM,.-, , .+llw-'llM, o-,,.} 
n 

(2) 

Now we apply the same reasoning to the operators II Z:'  II- Instead of (1) we will 

obtain 

fad \ 1/2 iir:,ll2 (du)) <= c . ~ Ill w II l(v) + II v II l(w)} <= c{Mo + M.}  

So 
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r 
d(E; F) <= mini] T. t1" II T~'][ = I., II Z~ I1' II T:'l[d~(u) 

n 

and we have proved the corollary. 

If we apply Theorem 1 to the estimation of d(E, l~), we simply get d(E, l~) <= 

CX/n(X/log n + K~2)(E)). 

This estimate can be improved as follows: 

THEOREM 2. For every a > 1, there is a function ~ = ~ ,  such that, for every m, 

q~ ( n )/log~" )( n ) -~ O as n--*% such that Kt2)(E)<= a and d i m E  = n implies that 

d( E, IT) <-_ q~(n ) X/ n. Here log~)(n) = log( log( . . .  (log n ) ) . . .  ) (m-iterates). 

Before we prove the theorem, we define q~. Let log x denote log~x where 

a = (e/2) 1'2, so that a' <= e"2/4 for t _->4. 

LEMMA 3. Let a > 1. There exist qo >= 2 and ~ >- 1 such that, for every finite 

dimensional space X with K(2)(X) <= a, we have K<qo)(X ) <- ft. 

PROOF. If not, let d imX,  < oo and K~2)(X,) <= a for every n so that K~.)(X,) > 

n. Then K~2)((E X, )2) _-__ a, so K~q)((EX.)2)< 0% since an infinite-dimensional 

space with type p > 1 has cotype q < co (e.g. [21]). This is a contradiction. 

Now let ~g denote the maximal ellipsoid contained in BE., and let 

u*-~:l~---*E * be the operator  defining ~. Then u:l~--*E is defined in the 

natural way. We have as before, of course, that II(u-')*ll = 1 and 7r2((u-')*) = 

1r2(u*) = XTn. 

LEMMA 4. With the notation above, 7r~,2(u)=< a/3 XFn. 

PROOF. By proposition 5 and corollary 6 of [15], we have rrqo.2(u)_-- < 

K~qo)(E)l(u) <= K, qo)(E)K(2)(E)zr2(u *). That is, rrqo.2(u ) =< a/3 X/n. 

Now we define ¢. Let to be chosen so that t >_ to implies that (log t"2t3") q°/2 < t. 

Let ~ ( x ) =  (Iog x~2°2) '~'2 and define 

~b(n) = min{k : • . . . . .  ~(n)}  =< t~ -~. 
k t i m e s  

Finally, q~(n) = ~v/~b(n) ,c~/3 ~v/log to + a) .  
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If F is a k-dimensional  subspace of l~, and if G = u(F)CE, M~ will deno te  

the mean  value of Ilu(x)ll on the sphere,  S(F)C I~. That  is 

M~ 

By results above  Mz <= X/(n/k )Kt:~(E). 

PROOF OF THEOREM 2. We first define an o r thonormal  basis ( / , )  for  17. Let  f~ 

be chosen so that  

II ufo I1 -- max{ll u x  II:llx II -- ~- 

Having chosen f~,..., [,-s+~, let f , - i  satisfy 

II u[._, II = max{l[ ux II: II x II -- 1, (x,/~ ) = 0 for i > n - j}. 

What  we have is Ilu~ II = Ilu I I/o," ",/,+,]~11 for each j. Set m, = n, and let 

J, = ~ :  ]1 u~ II =< (n/log m~)~/2}, and let E ,  = span ~),~s, .  We clearly have II u I El II --< 
(n / log  m~) ~/2. Proceed  inductively: suppose we have k => 1, sets Jr, J2,'" ",J k, 
subspaces E ~ , . . . , E ~ ,  and integers m~ > m 2 >  • • • > m k  defined. Let  mk+~ = 
dim ((E~ ~9 . . .  ~) E~ f ) ,  and let 

Jk+, = {j : (n / log  m~) '/~ < [1 ufj l[ =< (n / log  mE +,)'/~}. 

Also let Ek+~=span~)i~s~+,. For  fj E ( E , O . . . ~ ) E k )  l, we must  have Iluf, ll> 
~/%~n/lo mk) ~/2. (n / log  ink) '~2, L e m m a  4 gives us that aft "X/n>= 7rqo.2(u) >= ma+~ . g Thus,  

mk÷~ <-(a2/321ogm~) q°/-~. This p rocedure  continues,  then,  as long as mk+~ < rnk. 

That  is, it terminates  af ter  ko<=(o(n) steps. F rom the definitions, we have 

[lu{E,,ll<=(n/logmk) ''~ for  l = < k _ - < k o - 1 ,  and Ilulz~,ll<_-Vh. Notice  that  
a 2  2 

dim E~ = to ~. We apply proposi t ion 2.3 of [6] to EE and the funct ion Ilu(. )11. 
This says that  there  is a uni tary opera tor ,  Uk, on Ek so that  tluu~f, ll_- < 
M~+Ilu lU~I]~  if j E J ~  and dimEk(<=mk)<a 'd~m~'~. We set e ~ =  

(log m~/dim Ek)t'2. Thus,  it follows that  tl u u~f, II <-- ¢n/dim E~ )"~[K'~'(E) + 1], for  

j E J~. For  k = ko, we have 

11 uUd, II--< M~,, + I1 u 11 ~, 

<- (K~2~(E) + ~/log m~,) 

<= (n/mk,,)JP-(Kt2~( E) + a13 V'iog to) 
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for j ~ Jko. We now define the isomorphism T:  l~--->E. Let ej, j = 1 , . . . ,  n, be a 

natural basis of l~ and define 

Te, =(uUk[j)(V'~nn Ek) for j EJk. 

Then [[ TII = max,=,~.[[ Tej [[_= K'2~(E) + ~13 ~v/log to, from above. For scalars 
(c,)7=l, we have 

1] ~ c'Te' l[ >>-11 ~ ~'" '~e'l] = ( ~  I[,~, ~'"'~e'll) ''~ 

[ ~ d i m E ' l / , ~ j ,  c, U / J  

= [ ' ~ d i m E ' ( s ~ l c s l 2 ) ] ' / : - -  > 1 ~ l c ,  I 
i=J n , - Vnko 

> 1 21c ,  I 
Vn~5 (n) j=, 

That is, tlT-'ll~=Vn,i,(n), completing the proof. 

In the results of this section, the spaces that are shown to be relatively close 
together are, a priori, rather far apart. That is, they lie, in a very reasonable 

sense, on opposite sides of l~. Therefore, in order to lind spaces whose 

Banach-Mazur distance from each other is large, one needs to look at pairs of 
spaces lying on the same side of l~. We propose candidates for such pairs. 

PROBLEM 2. Determine, in each of the cases below, d(E, lT). 
(a) Let {x,}~"_-~ be distributed on the sphere in Euclidean n-space to maximize 

the volume of co{ -+ x, } = B. Let E be n-space with the norm determined by the 
unit ball, B. 

(b) In l~", let Kt,/(~ be a Kashin splitting [14], [25]. That is, K1 and /(1 are 
nearly Euclidean subspaces of l~ °, and are orthogonal in the l~" sense. Let 

E = l~"/K~. This is, as in (a), an n-dimensional space whose ball has 4n extreme 

points. In this case, the extreme points are, more or less, randomly distributed. 

It is known, at least in the second case, that d(E, iT) is asymptotically larger 

than ~/n ([8], remark and corollary 2.3 yield the dual form of this statement). 

There is some evidence that this distance is actually larger than 110/2)+~ asymptoti- 

cally for some e > O. It also follows from results of the third-named author that it 
is hopeless to try to find that spaces are far from lg by using operator ideal 



12 w.J. DAVIS ET AL. Israel J. Math. 

norms. Specifically, if y~")(u) is the "ideal norm"  generated by factoring rank n 

operators through lg, then for any space E, y~')(iE) ---- X/n, where iE denotes the 

identity on E. (If u : E ~ F has rank = n, let u = E u~ with/x~ = fl~a~, a~ : E ~ lg, 

/~ = l:---~ F. Then ~/~"'(u) = inf{E II ,, II II P, Ill u = ~ u,}.) This statement is pre- 

cisely dual to factoring the identity through 17. 

§2. Factorization through 1~ 

The results of §1 admit certain extensions. For example, Corollary 1 there tells 

us that, if E has cotype 2, then the identity map on E factors as u:E--~  12 

followed by v :12---~E so that II u tltlo II--_ < c x / n  log n In this section, we see that 

for any space E with dim E = n, there is a subspace, Eo of E, whose identity map 

factors well through 12, and such that dim Eo >= n/lO. 

In proving this, we shall use the famous lemma of Dvoretzky and Rogers [4]. 

We first give a very simple proof of this lemma which is familiar to many experts 

in the field. 

DVORETZKY-ROGERS LEMMA. Let E be an n-dimensional space, and let 

u :l~--~E be defined by u(Bt~) is the ellipsoid of maximal volume in BE. Then 

there is an orthonormal basis, (e,), in 17 so that JJue, J[ _-> (1 - (i - 1)/n) "2. 

PROOF. We need only two facts already noted here: zr2(u) = 7r2(u -~) = X/n 

and for any w: l~--~ E, ~'2(w) =< x/kll w II. Choose e, E I~ so that IJ e~ II = II ue, Jl = 1. 

w e  proceed recursively. Suppose we have chosen et, e2,. .  ",ei in l" 2 to be 

orthonormal and to satisfy the lower bound above. Let Ej = [e~, . . . ,  e,]. Then 

u- 'o(uJE~)  is the identity on E~ so we have n - j = t r ( u - ' o ( u l E ~ ) ) < =  

1r2(u-')~r2(u IE~). Since 1r2(u-~) = W'n and 

(n - j) /~/n,  we have II u II--> x / ,  - fix/n, w e  can now select ej+~ in E ,  so that 

Ile,+,ll-- 1 and II ue,+,ll--> V'(n -j)/n as desired. 

THEOREM 3. Let E be an n-dimensional space. Then E D Eo with dim Eo _-> 

n/lO so that i~o = y o u  where u :Eo-~12-~ Eo and JJuJJJJvJJ<- 38%/n, with 8 = 

(1 - 3/~/1-0) -'. 

u - I  

PROOF. Let I~-~ E ~ I~ be the maximal ellipsoid factorization as above, 

and let (e,) be the orthonormal basis from the Dvoretzky-Rogers  lemma. We 

now define an operator  w : E  ---) IL Let x* in E *  be chosen so that Ilx:II = 1 and 

x~ (uej) = [[ uej [[. Let 
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)( ) W----- 11S ~ II ue, Ux ~ ® e, . 

Since u = Eei  ® (uei), we see easily that tr w o u = n. We now factor  w through 
w I w z 

i2: Define E ~l~" ~17 with w = w 2 o w t ,  where  w~(x)=(x~(x))  and 

w=((~, )7-0 = ( , / Y  II ue, II 2) (~, II ue, 11)7~,. Using the est imates X/(n - j ) / n  <= 11 ue, II---- 
1, we see that  

IIw, l l < l  and IIw211=~2(w~)<=[ 
2n 

= \ n  - 1 /  " 

Now represent  w o u  in polar  form, ET~L[~®gi, with h,_---0, ~ )  and (g~) 

o r thonormal .  Let  U = E g i ® / ~ ,  so U is an isometry  on i~, " and U o w o u =  

E hif~ ® f ,  We have n = tr w o u <= i,(w o u) = i , (U o w o u)  = E hl, and (EA~) 1/2 = 

H S ( U o  w o , )  = ~2(Uo  w o u)  <= II U II ~2(w2) ll w, II II u II --< 3 X/n (at least for  n => 3). 

That  is, considering A = ( h i )  to be a funct ion in Lp ({1 , . . - , n} , / z ) ,  where  

l x ({ i } )=l /n  for  each n, we have l <=fhd#  and (fh2d/z)~/2_-__3. Let  

A,  C { 1 , . - . ,  n} be the set where  hi => e. Then  

1 = Adtz + Adp. _--</z (A,)'/2 A 2d/~ + e/x (A ~,) _-</z (A,)~/2.3 + e. 
• 

Thus,  / z ( A ~ ) - I / 1 0  if 1/8 = l ~ 3 / X / 1 0 .  That  is, the cardinali ty of the set 

A = [)ti = > 1/8] is grea ter  than n/lO. In 1 n2, let F = [fk [k E A], so d i m F  = > n/lO. 
Also, for  any f ~ F, we have II u o w o u~)ll--> (1/8)11f11. The  subspace Eo is just 

u(F). Let  v : Eo---~ 12 by v = w~]~ and t~ : 12----~Eo by fi = 

u o ( U o  w o u [F)-~o(Uo wl). This is the desired opera tor .  

We  conclude the paper  with a few remarks.  The  lemmas of §1 are, in fact, 

est imates of the Levy  mean  of the norm of a space over  the maximal  and 

minimal vo lume ellipsoids. In [6] we see that,  if I" ] is a Eucl idean no rm on E 

such that  a Ix 1---_< IIx II--- b Ix ] with a-~b = n, then the Levy  mean,  M,, of the no rm 

of E over  the Eucl idean sphere  S = {I x I = 1} is, up to a constant ,  the  same as 

( f s  II x l12dm)l'2. For  a normal ized  Gaussian measure  on  this Eucl idean space, we 

have (fs 11 x 112dm)"2 = n - ' " ( f  II x 112dy) ''2. T h e  r ight-hand side is just l(u ), where  

u : (E , I .  I ) - - , (E ,  II" II) is the  formal  identi ty map. 

Fol lowing [16] and [7], one  can define t he / - e l l i p so id  to  be  that  one  given by 

the relat ion l (u ) l* (u - ' )=  n. (This can be fur ther  normal ized  by I l u l l = l ,  if 

desired.)  By [7], [19] and [22], l* (u - l )  < (log n )l(u *-'). By the remarks  above,  for  

this ellipsoid one  has M,M,. <= C log n. The / - e l l i p so id  remains  until now a ra the r  
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mysterious object. For certain computations, it would be very nice to have 

estimates for M, and M,. when u(B~ ) is, for example, the maximal volume 

ellipsoid. Our Lemmas 1 and 2 give such estimates. These are summarized in 

COROLLARY 2. Let u : l~, --~ E so that u (B~ ) is the ellipsoid of maximal volume 
in BE. Then, (a) M,<=cK~2'(E), (b) M,.<=cK'2~(E*), and (c) Mr .=  < 

cKt~(E) log(dim E). In particular, MrM,. <- cKt2~(E)Kt2~(E)log(dim E ). 

Part (a) actually just uses the trivial estimate l(u) <= K~2~(E)Tr2(u) noted before 

Lemma 1. 

In case E has enough symmetries, the /-ellipsoid and maximal ellipsoids 

coincide. Therefore, in that case, the appearances of Kc2~(E) and K~2~(E) are 

superfluous. We do not know whether or not this is true in general. 

Added  in proof. The authors have recently learned about the striking result 

of E. D. Gluskin. There is a constant c > 0 so that the diameter of the space of all 

n-dimensional spaces is greater than cn (Funkcional. Anal. i Prilo~en (Russian), 

to appear in 1981). 
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