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THE DISTANCE BETWEEN CERTAIN
n-DIMENSIONAL BANACH SPACES'

BY
W.J. DAVIS, V. D. MILMAN AND N. TOMCZAK-JAEGERMANN

ABSTRACT

If E and F are n-dimensional Banach spaces, if E has cotype 2, and if the ball
of F* has a small number of extreme points, then the Banach-Mazur distance
d(E, F) = CVnlog n. The techniques lead to the formally stronger result: If E
and F* have type 2 constants a and b, respectively, then d(E, F)= Vn(a + b).
If E is n-dimensional, the identity map on E, when restricted to a large
subspace of E, factors through /% with norm CVn.

§0. Introduction

Given Banach spaces E and F, the Banach-Mazur distance between them is
defined by d(E, F)=inf{||T||| T~'||| T : E — F}. Geometrically, this says that,
for any £ >0, there is a map S:E — F so that B CS(Bg)C(d(E, F)+ ¢)Br,
where Bx denotes the unit ball of the space X. If E is an n-dimensional space,
the F. John lemma [12] implies that d(E, I;)é\/;z. Thus, for any pair of
n-dimensional spaces, d(E, F) = d(E, I7)d(I3, F) = n. In the other direction, it is
known that d(I7,12)= Vn. Therefore, if %, denotes the collection of all
n-dimensional Banach spaces endowed with the Banach-Mazur distance, we
have Vrn=diam %, = n.

One case is completely settled. Motivated by work of Asplund [1], W.
Stromquist [24] has recently proved that diam %, = 3/2. In fact, he was able to
show that the Banach-Mazur radius of %, is V3/2.

Starting with two papers of Gurarii, Kadec and Macaev, distances within
specific classes of spaces have been examined. In [10] the correct asymptotic
distance between I and I were computed. In [11], an estimate was given for
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d(I7, E) in the case that E has a symmetric basis. Recall that a basis (e )i, is
symmetric if, for any sequence of scalars, (a;), and any permutation, o, of
{1, -, n}, we have | Z ae; || = ||=| a; | €, |- This direction has been pursued more
recently in the papers [4] and [28]. What is now known is that there is a universal
constant, C (on the order of 10), such that d(E, F)< CVn(logn)’ if E and F
are n-dimensional symmetric spaces. We must point out that the presence of the
logarithmic factor in this estimate is not known to be necessary. Such factors
occur again in our estimates, and may simply be by-products of the proofs, rather
than consequences of reality.

This sort of investigation has continued in several other special cases. For
example, if E has a 1-unconditional basis, then the third-named author has
recently shown that d(I;, E)= CVn(l+logn). This result, due to technical
difficulties, has not yet been extended to the general case of d(E, F) when E and
F both have 1-unconditional bases. (A basis (&) is 1-unconditional if [|£ ae || =
|Z]a:]e]l for all choices of scalars, (a:).)

All of the results mentioned above are proved very constructively, and use
quite specific orthogonal matrices. Somewhat more existential is the basic
argument in [26]. There it is shown that, asymptotically, d(C;, C3)~ d(l;, I7).
Here, C; denotes the Schatten class of operators on I3, That is, if T: 13— I3 its
norm in Cj is just (tr(T*T)?”*)"?. Notice that dim Cj is n’, so that the estimates
for d(C?, C2)~ (dim C7)", for example.

Before we go on, we need some terminology which we shall employ
throughout this work. Let X be a Banach space, and let (r:(t)) denote the
Rademacher functions on [0, 1]. X is said to have type 2 with constant K“(X)
(respectively cotype 2 with constant K (X)) if

([ |2 x| @) =Ko (Sixk)

(respectively, = (/K (X)) (2 [l x: ||2> :/2) .

12
’

The constants K® and K, are assumed to be the smallest which work. Since, for
1sp <o, (SIS n@)x|Pdt) ~ (f|Z r.()x: [Fdt)"?, [13], we need not worry too
much about the norm used on the left-hand side.

We shall, of course, also need some facts from the theory of operator ideals.
Most of what we use can be found in [16] or [21] as well as in many of the other
references cited here. Let (x;)/~; CX. Define

& (x:) = sup{(Z|x*(x)P)"” | x*] =1, x* € X*}.
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An operator, u : X — Y, is p-summing if there is a (smallest) constant, ,(u),
such that for all choices of (x;) C X, we have

(ShulP) = m e ).

The constant, m,(u), defines a norm, and we always have m,(vuw)=
lollwl 7 (u). In case X and Y are finite dimensional, the space of 1-
summing operators from X to Y has, as its dual, the space of »-factorizable
operators. That is, defining y.(u) =inf|| 8| |a| such that a: X — L., B:l.—>Y
and u=pg°a, we have 7y.(u)=sup{|truv| ' m(v)=1} and m(u)=
sup{|tr uv|| y«(v) = 1}. Another norm we shall need is y.(u). Analogously,
v:(u) =inf|| B||||a| such that @ : X > I,, B:l,— Y and B o« = u. In case u is the
identity on X, y-(u) is the projection constant of X and vy.(u) is the distance
from X to I$™*. Finally, we need the nuclear norm. Let u: X — Y, where the
spaces are finite dimensional. Then

V) (= i) =int{ T ue) = S ax 1A 20, xtl =l =1}

This norm is the dual to the operator norm: »(u) = sup{|truv|||v|=1}.

In §1, we abandon the symmetry and lattice assumptions above and prove a
somewhat different sort of distance estimate: If the unit ball of E and unit ball of
F* both have a small number of extreme points, say less than n* for some a,
then the distance from E to F is bounded by C V' n(1 + log n), where C depends
only on a above. This result has its roots in [26], where distance estimates are
obtained by ‘““unitary factorizations” of operators through Euclidean spaces. In
[3], Chevet proved an inequality involving ‘“Gaussian factorizations” which
allows us to extend this result. The idea of using the Chevet theorem in this sort
of factorization question originated in an early version of the paper by
Benyamini and Gordon {2]. We appreciate their letting us have a preprint of that
paper. We are also grateful to G. Pisier for showing us an inequality in Marcus
and Pisier [18] which relates Gaussian and unitary averages, and hence allows
the application of the factorization scheme to our problem. The extension
which occurs is: if E and F are n-dimensional, then d(E, F)=
Vn(K®(E)+ K®(F*))C, where C is a universal constant. In case the spaces E
and F have enough symmetries, this result may be improved by replacing V' n by
max(d(E, I3), d(F, I7)).

The second section contains various results related to this work. For example,
if E is an arbitrary n-dimensional space, it has an n/10-dimensional subspace
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whose identity factors through I7 as u v with ||u|||v|[= CVn (C is universal).
We conclude the second section with estimates of the Levy mean of the norm of
an n-dimensional space with respect to the F. John ellipsoid.

§1. Distance questions related to type 2 constants

The main result of this section is Theorem 1, which says that if E and F are
n-dimensional, then d(E,F)= CVn(K?E?*)+ K?(F)). The motivation for
this result lies in the following proposition, which is a modification of the main
result of [26].

Theorem 1 below is a strengthening of Proposition 1. If By has a small
number, say 2m, of extreme points, then F embeds isometrically into [ Since [Z
has type 2 constant on the order of \/m, so does F. In particular, if m = n®,
then F has type 2 with constant smaller than Va log n.

ProposITION 1. Let dimE =dimF = n, suppose that |ExtBg|=n® and
|Ext Be+| = n®. Then there is a constant C = C(a, ), not depending on E, F or n,
such that d(E, F)= C(a, B)Vn(1 +logn).

Proor. Let € and € denote ellipsoids such that (1/Vn)€ CB: C% and
€ CB: CVné&. For example, by F. John’s lemma, € may be taken to be the
minimal volume ellipsoid containing B: and € the maximal volume ellipsoid
contained in Bg, [12]. After an affine transformation, we may as well assume that
% = €, so that we have (1/Vn)€ CB: C € C B CVn&. If we let | - |, denote the
Euclidean norm on R" given by this ellipsoid, and denote the resulting Euclidean
space by H, we consider only maps from E to F of the form E->H->H—>F.
Here i and j denote the formal identity maps and u, to be chosen, is a unitary
operator on H. We have, from above, ||i||=||j||=1 and both ||;'|, i ||= Vn.
Of course, ||ul|=1=]||u*|. Thus, if we set A" =i""ou*ej™", we have |A7}||=
n, independent of the choice of u. To estimate the norm of A =jou i, we need
some notation. Let U denote the group of unitary operators on H, and let
denote the normalized Haar measure on U. Just as in [26], for any constant a
and vectors x, y € H having norm 1, a direct calculation shows that

uw{ue U | |(ux, y)| = a} = Ce ™™,

where C is a universal constant (sufficient is C = 4). This sort of estimate is
convenient for computing ||A|, since |A [ =max{[(Ax,y")||x € ExtB;,
y' € Ext Bg-}. For x € Ext B and y’ € Ext Bg., then, we have
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I"'{u € U“(ux,y’”; a |x|2l)"|z}§Ce‘"“2’2,

For ||x|le =1 and |ly’[l--=1, we have 1=|x|,=1/Vn and 12|y',=1/Vhn,
respectively. In particular, this gives us p{u|[(ux,y")|Za}<Ce™ if
x € Ext Bx and y’ € Ext Be. Therefore, we have that

u{u || A< a}=1- C|Ext Be| |Ext Bp.| ™"

For the right-hand side to be positive we simply need |Ext Bg||Ext Be.| <
(1/C)e™. Taking the log of both sides, and recalling the hypothesis, we see that
we need a logn+ Blogn <na®—logC, so that, in particular for n =3, it is
sufficient to have

a= ((a + B +log C)log n)”2
” .

What we have shown is that there is a unitary operator u so that

. , logn
JAl=ljoueil< VaF BTogCy 2"

and so we have d(E,F)=||A|||A7'|=Va+B+logCVnlogn. This com-
pletes the proof with C(a, 8)=Va + 8 +logC.

We now proceed to the main result of this section. We need a definition and
some results from [7]. Let T:1;— E, and define

12

MT=< f ”Txﬂzm(dx)) . (T)=VaM.

If . denotes normalized Gaussian measure on I35, then I(T) = (f,»]| Tx |Pdy. ).
If (e:) denotes the natural basis for /7, and if (g ) is an independent sequence of
Gaussian random variables with mean zero and variance 1, then we also have
I(T)= fa||Z gi(w)Te:|Fdw)". From this last statement, since Gaussian random
variables can replace Rademacher functions in the definition of type 2 and
cotype 2 constants, we see that [(T) = KP(E)(Z| Te: [)"* = K(E)wAT).

LeMMA 1. Let T:15— E. Then, I(T)= K®(E)m(T*).

PrOOF. Let E*-5 125175 17 be a good 2-nuclear factorization of T* (e.g.,
[21]). That is, ||v]|=]|lw| =1 and ||A|| < (1 + &)7A(T*), where A(e;) = 8,e.. Thus
lall= (18 F)". Then (f|Tx|Pdy.)"=(f|v*A*w*x|fdy.)" by [7]. Since
[w*[|=1, we have
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1/2 1/2
([uzsran) = (] horarwxfar)

= (L "2 g(w)v*A*e 2dw)”2

172

=k2E) (S0 avelr) "= ko) (S 1aver)

= K(E)||A*|| < K2(E)(1+ e)moT*).
Since ¢ is arbitrary, we have the result desired.
Last, we need a lemma well known to many people.

LEMMA 2. Let u:l5— E such that u(B;) is the ellipsoid of maximal volume
in Be. Then my(u)=m(u™")=Vn.

PROOF. By definition, |[u|| =1, so m(u) =||u| m(l5) = Vn. As in, for exam-
ple, [9], [16), there are positive scalars A; with £ A, = n and points {x,};.: CE so
that ||x|e =1=|x]le- =)lu"'(x:)|. Here the pairing is given by x(x)=
{u*x;, u'(x)). Further, for x €E, x =3 Axi(x)x. Let {z}i-,CE so that
Cx', z))” =||x’|le- for each x’ € E*. We have

,Zn lu(z)IF = ,21 W'(z),u(z))= 2 )‘i; [x(z)F=n,

by the choice of {z;}. Thus, by definition, we have = (u~')=Vn. Since
tr(ueu)=n= m(u)m(u"), we see that m(u)=m(u"")="Vn as desired.

TueoreM 1. Let dim(E)=dim(F)=n. Then d(E,F)=cVnK®E*)
+ K®(F)), where c is a universal constant.

PrOOF. Let v:15—E and w:l;— F* have the property that v(B; ) is the
maximal volume ellipsoid in Be and w(By;) is the maximal volume ellipsoid in
Br.. We will select a unitary map, u, on /5 and set T =(w ')*ouo(v"). Then
T '=vou*ow* has norm = 1. First we need a concrete representation of T.
Let x;=(v")*(e) and y, = (w)*(e) for i =1,2,---, n. Then, if u = (u;), we
have T=T, =2}, u;x:®y. If u denotes normalized Haar measure on the
unitary group, ., a recent result of Marcus and Pisier [18, V.2.4] says that

(Ln | T. Ilpu(du))"P§% (I HZ g..,-(w)x;®y,ll dw) ,
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where ¢, depends only on p and {g;} are independent, N(0, 1) Gaussian random
variables. Using the inequality due to Chevet, [3], we see that

([, 17t uian) s
=& (&(xﬁ)( f ”E g,-yiuz dW)m-i-sz(y.-)( f ,’Zgix:- 2dw>”2>.

Recall that £,(x}) =supy-1 (Z|(xh x)[)"?, so we get e(x}))=|v""|. Similarly,
eAy)=|w'|. As above, (J||Z gy:[Fdw)?=1((w™")*) and (f||Z gxi|fdw)"* =
I((v™)*). So we have

P l/P< < U"l —1y% -1 =1y %
O ([ Imr) = B ey e

By Lemma 1, we have [(w )*)=K®F)m(w™), and (v )*)=
K®(E*)m(v™"). Using Lemma 2, we get [a || T p(du)= C{|lv™'[|[K®(F)
+||w | K®(E*)}. Since [[v'|Sm(v™"), etc., we finally get min]T,|=
fa, | T ldp = ¢ V{K®(E*)+ K®(F)}, as desired.

In the proof above, notice that, if the maximal ellipsoid yields |v ™| = d(E, I3),
and ||w'||= d(F, I3), then we get the estimate

d(E, F) = C(K®(E*)+ K®(F))max{d(X, I3), d(Y, I3)}.

This situation occurs if E and F have enough symmetries (see, e.g. [9]).

CoroLLARY 1. If dimE =dim F = n, and if E and F have enough symmet-
ries, then

d(E, F)= C(K™(E*)+ K®(F))max{d(E, I3), d(F, I5)}.

This corollary is, in a sense, best possible, due to the following.

ProposITION 2. Let dim(E)=dim(F)= n. Then
d(E, F)Z{(K®(E*)K(F)) " max{d(E, I5), d(F, I5)}.

Proor. It is true that Ko (E) = K“(E*) and K (F*) = K“”(F). By a result
of Pisier, [23], if u:F—E, then yy(u)=3}(Kuo(F*)Ko(E))"||ull. Let u be
chosen so that |ul{|lu"'|=d(E, F). By the Pisier result, u =pgca where
a:F—1: B:I:—>E, and |[B|[e|=CE(Kao(F*)Ko(E))*|ul. We have
d(I5,E)=|Bflacu"|. That is, max{d(E,I3),d(F I} =|la[|B|[u""]. The

proof is complete.
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It may be that the result of Corollary 1 holds in general. That is,

ProBLEM 1. Is there a constant C so that, if dimE =dimF = n, then
d(E,F)= ¢(K®(E*)+ K®(F))max{d(E, I3), d(F, I5)}?

COROLLARY 2. Let dx = d(lz, X) and let k(X) be the largest dimension of a
subspace of a Banach space X which is 2-isomorphic to the euclidean space l;. Let
E and F be n-dimensional Banach spaces. Then

*N(VK(E)+ Vk(F*))}

where C is some universal constant.

Proor. We have to return to the proof of Theorem 1. First, we use new
embeddings v : 17— E and w : I;— F* which give the distances dr and dr. More
precisely, let 1/de || x || =]|vx || =||x| and 1/dr || x | =||wx || = || x|. Then, by [6], §2,
there exists an absolute constant ¢ such that k(E)= ¢nM: and k(F*)= cnM;,
(we recall that as before M: = [s-1|vx|'m(dx)). Similarly

2 2
k(E*)écn(M) and k(F)zcn(M-‘"—'[—') .
de dr

We use all these inequalities to continue inequality (1) (we use the same letter ¢
for different universal constants),

(], 17uli(@0)” = Cllo 1M+ I IMos)

Now we apply the same reasoning to the operators || T.'||. Instead of (1) we will
obtain

@

([ 17eRucan) "= St i@+l = cim, + M.

= VER )

So
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d(E; By S min] TIA T [ ITIAT du o)

172 1/2
(] 1mpan)” (], 17etpan)
U, U,

and we have proved the corollary.

If we apply Theorem 1 to the estimation of d(E, I7), we simply get d(E, I7) =
CVn(Viog n+ K®(E)).
This estimate can be improved as follows:

THEOREM 2. Forevery a > 1, there is a function ¢ = ¢., such that, for every m,
¢(n)/log™(n)—0 as n >, such that K?(E) = a and dim E = n implies that
d(E, I})= ¢(n)Vn. Here log™(n) = log(log(- - - (log n))...) (m-iterates).

Before we prove the theorem, we define ¢. Let logx denote log,x where
a =(e/2)"?, so that a =e'’/4 for t Z 4.

LeMMA 3. Let a > 1. There exist go=2 and B =1 such that, for every finite
dimensional space X with K?(X)=a, we have K, (X)=p.

ProOOF. If not, let dim X,, <« and K?(X,) = a for every n so that K,.(X,)>
n. Then K?((Z X.))=a, s0 K, ((E X,),)<w, since an infinite-dimensional
space with type p >1 has cotype g < (e.g. [21]). This is a contradiction.

Now let &€ denote the maximal ellipsoid contained in Bg., and let
u*':13> E* be the operator defining €. Then u:l5— E is defined in the
natural way. We have as before, of course, that ||[(u™")*||=1 and m((u")*) =

m(u*)=Vh.

LEMMA 4. With the notation above, 7, (u)=< aBf Vn.

Proor. By proposition S and corollary 6 of [15], we have m (u)=
Ka(E)(u) = Ko (E)K?(E)m(u*). That is, m,,(4)<aB Vn.

Now we define ¢. Let f, be chosen so that t = t, implies that (log t****)%* < t.
Let ¥(x) = (log x****)** and define

¢(n)=min{k : - - o W(n)} = 15"

Finally, ¢(n)=Vé&(n).ap Viogt,+ a).
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If F is a k-dimensional subspace of I3, and if G = u(F) CE, M will denote
the mean value of ||u(x)|| on the sphere, S(F)Cl3. That is

Mo =([, pweaipman)) = (], pucoran)

By results above Mg = V/(n/k)K?(E).

Proor oF THEOREM 2. We first define an orthonormal basis (f,) for I3, Let f.
be chosen so that

luf. || = max{]jux |- ] x ]| = 1}.

Having chosen f,- -, fo_j«1, let f,_; satisfy

llufo-; | = max{|lux |: | x| = 1,{x, ;) =0fori > n —j}.

What we have is [luf;||=|u|[fs ", fix]‘]| for each j. Set m,=n, and let
Jo={j :||uf; | = (n/log m)"?}, and let E, = span(f,),cs,. We clearly have |u | E,|| =
(n/log m))"*. Proceed inductively: suppose we have k =1, sets J,,Jp, -+, Ji,
subspaces Ei,---, Ei, and integers m,>m,> -+ > m, defined. Let my., =
dim((E, & - ® E.)"), and let

Jen ={j :(n/log m)'" < |[uf,| = (n/log mu..)""}.

Also let E,.; =span(f);es. - For fi €E(E:&® - ® E.)", we must have | uf,|>
(n/log m.)"*, Lemma 4 gives us that aB Vn= m, (u) = m,%(n/log m.)">. Thus,
M+ = (a’B’log my )*”. This procedure continues, then, as long as my., < my.
That is, it terminates after ko= ¢(n) steps. From the definitions, we have
lu|E = (nflogm)” for 1=k =k,—1, and [u|E|=Vn Notice that
dim E,, = ™. We apply proposition 2.3 of [6] to E, and the function [lu(-)].
This says that there is a unitary operator, Ui, on E, so that |uUf||=
Mg, +||lu|Ellex if jEJ and dmE(Sm)=a“"5 i We set & =
(log m /dim E,)"*. Thus, it follows that ||uU.f, || = (n/dim E.)"*[K®(E) + 1], for
j € Ji. For k = ko, we have

luUsfill= Mo, +[lules,

n 12
= (;1:‘) (KP(E)+ Viog my,)

= (n/my)"(K?(E) + af Viog to)
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for j € Ji,. We now define the isomorphism T:I7—E.Lete, j=1,---,n bea

natural basis of !, and define

Vdim E,
Vn

Then || T||=max,s;z.|| Te; | = K?(E)+ aB Viogt,, from above. For scalars

(c:)r-1, we have

Te; =(uka,-)< ) for j € J.

ko 12
S eTe =D cu'Te, =(2 > cu'Te; 2)
=1l i<y,
di E =
-[BE]5 e us l]

[ 1]

i=1

HV

E!,l

That is, | T7'|| = V né(n), completing the proof.

\/ncp(n)

In the results of this section, the spaces that are shown to be relatively close
together are, a priori, rather far apart. That is, they lie, in a very reasonable
sense, on opposite sides of [7. Therefore, in order to find spaces whose
Banach-Mazur distance from each other is large, one needs to look at pairs of
spaces lying on the same side of /5. We propose candidates for such pairs.

ProBLEM 2. Determine, in each of the cases below, d(E, 7).

(a) Let {x.};“, be distributed on the sphere in Euclidean n-space to maximize
the volume of co{ + x,} = B. Let E be n-space with the norm determined by the
unit ball, B.

(b) In 13", let K,, K, be a Kashin splitting [14], [25]. That is, K, and K, are
nearly Euclidean subspaces of [i", and are orthogonal in the !3" sense. Let
E = I}K,. This is, as in (a), an n-dimensional space whose ball has 4n extreme
points. In this case, the extreme points are, more or less, randomly distributed.

It is known, at least in the second case, that d(E, I7) is asymptotically larger
than Vn ([8], remark and corollary 2.3 yield the dual form of this statement).
There is some evidence that this distance is actually larger than n/?** asymptoti-
cally for some ¢ > 0. It also follows from results of the third-named author that it
is hopeless to try to find that spaces are far from ! by using operator ideal
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norms. Specifically, if y&’(u) is the “ideal norm’ generated by factoring rank n
operators through IZ, then for any space E, y&'(iz) = V'n, where iz denotes the
identity on E. (If u : E — F has rank = n, let u = 2 u; with w; = B, a; : E = [,
B = 12— F. Then y&(u)=inf{S|la|||Bl| u = =u}.) This statement is pre-
cisely dual to factoring the identity through I7.

§2. Factorization through /:

The results of §1 admit certain extensions. For example, Corollary 1 there tells
us that, if E has cotype 2, then the identity map on E factors as u:E— 1.
followed by v: 12— E so that u||||v||= C Vn log n. In this section, we see that
for any space E with dim E = n, there is a subspace, E, of E, whose identity map
factors well through I7, and such that dim E, = n/10.

In proving this, we shall use the famous lemma of Dvoretzky and Rogers [4].
We first give a very simple proof of this lemma which is familiar to many experts
in the field.

DvORETZKY-ROGERS LEMMA. Let E be an n-dimensional space, and let
u:15— E be defined by u(Byy) is the ellipsoid of maximal volume in Be. Then
there is an orthonormal basis, (e;), in I3 so that |ue; | = (1— (i —1)/n)".

ProOF. We need only two facts already noted here: m(u) = m(u~')= Vn
and for any w : I¥— E, m(w) = Vk||w . Choose e, € I} so that ||e,|| = | ue,| = 1.
We proceed recursively. Suppose we have chosen eje;,---,¢ in [7 to be
orthonormal and to satisfy the lower bound above. Let E; ={e,, -+, ¢;]. Then
uo(u IE;) is the identity on E; so we have n—j=tr(u 'o(u |E;))§
mou ) |es).  Since  m(u)=Vn and |uls|Vn—jzm(u |e) =
(n — j)/V'n, we have ||u IE; = V'n —j/Vn We can now select ¢, in E; so that
llej+ill=1 and [jue;.||Z V(n —j)/n as desired.

THEOREM 3. Let E be an n-dimensional space. Then E D E, with dimE, =
n/10 so that ix,= vou where u:E,—=> 12> E, and ||u]l|lv|=38Vn, with § =

(1-3/V10)™.

PROOF. Let I3-> E——> 17 be the maximal ellipsoid factorization as above,
and let (e;) be the orthonormal basis from the Dvoretzky-Rogers lemma. We
now define an operator w : E — I3, Let x} in E* be chosen so that || x*|| =1 and
x} (ue;) = ||ue; | Let
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w=(m)(zlluei||xt®ei).

Since u = 2 &; ® (ue;), we sce easily that tr w cu = n. We now factor w through
I: Define E—> l:—:z—ﬂ;’ with w = w,ow,, where w(x)=(x%(x)) and
wa(a: )i-1) = (n/Z | ue; |F) (e || ue: [[)i-1. Using the estimates V(n ~ j)/n=<||ue || =
1, we see that

2n
Iwfl=1 and ||w2||=m(w2)g(n—_—1)\/?..

Now represent weu in polar form, 27, Afi®g, with A, =20, (f) and (g)
orthonormal. Let U=2g ®f, so U is an isometry on I; and Uewou =
SAf®f. We have n=trweou=i(wou)=i(Ueowou)=2 A, and (A}’ =
HS(Uowou)=m(Uowou)=|Ul|mw2)llwi|[ull =3Vn (at least for n = 3).
That is, considering A =(A;) to be a function in L,({1,---, n}, n), where
w(d{iP=1/n for each n, we have 1=fAdp and (fA’du)”=3. Let
A, C{l1,---, n} be the set where A, = . Then

1/2
I=f Adu +f Adu §p(A£)”2(fAzdu) +eu(A)=p(A)? 3+e.
A, AS

Thus, u(As;)=1/10 if 1/6 = 1=3/V10. That is, the cardinality of the set
A =[A; = 1/8] is greater than n/10. In I3, let F = [fi Ik € A], so dim F = n/10.
Also, for any f € F, we have ||[U e w e u(f)|| = (1/8)||f|l. The subspace E, is just
u(F). Let wv:E,—I2 by wv=wlg and &:[2>E, by &=
ue(Uewou I.:)‘1 o(U ¢ w,). This is the desired operator.

We conclude the paper with a few remarks. The lemmas of §1 are, in fact,
estimates of the Levy mean of the norm of a space over the maximal and
minimal volume ellipsoids. In [6] we see that, if | -| is a Euclidean norm on E
such that a | x| =||x||= b|x| with a”'b = n, then the Levy mean, M, of the norm
of E over the Euclidean sphere S ={|x| =1} is, up to a constant, the same as
(Js |l x [Fdm)"*. For a normalized Gaussian measure on this Euclidean space, we
have (Js ||x|fdm)"” = n""*(f || x |’dy)"*. The right-hand side is just I(u), where
u:(E,|-])—(E|-]D is the formal identity map.

Following [16] and [7], one can define the I-ellipsoid to be that one given by
the relation [(u)!*(u™")=n. (This can be further normalized by ||u| =1, if
desired.) By [7], [19] and [22], I*(u ") = (log n)I(u*""). By the remarks above, for
this ellipsoid one has M,M,. = Clog n. The [-ellipsoid remains until now a rather
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mysterious object. For certain computations, it would be very nice to have
estimates for M, and M,. when u(B;;) is, for example, the maximal volume
ellipsoid. Our Lemmas 1 and 2 give such estimates. These are summarized in

CoROLLARY 2. Letu:15— E so that u(By;) is the ellipsoid of maximal volume
in Be. Then, (a) M =cK“(E), (b) M.=cK?E*), and (¢) M.=
cKo(E)log(dim E). In particular, M\M,- = cK®(E)K(E)log(dim E).

Part (a) actually just uses the trivial estimate /(1) = K(E)mr,(u) noted before
Lemma 1.

In case E has enough symmetries, the [-ellipsoid and maximal ellipsoids
coincide. Therefore, in that case, the appearances of K®(E) and K.(E) are
superfluous. We do not know whether or not this is true in general.

Added in proof. The authors have recently learned about the striking result
of E. D. Gluskin. There is a constant ¢ > 0 so that the diameter of the space of all
n-dimensional spaces is greater than cn (Funkcional. Anal. i PriloZen (Russian),
to appear in 1981).

REFERENCES

1. E. Asplund, Comparison between plane symmetric convex bodies and parallelograms, Math.
Scand. 8 (1960), 171-180.

2. Y. Benyamini and Y. Gordon, Random factorizations of operators between Banach spaces, J.
Analyse Math., to appear.

3. S. Chevet, Séries de variables aléatoires Gaussiens & valeurs dans E ), F, Seminaire
Maurey-Schwartz, 1977-78, exp. XIX.

4. W. Davis and P. Enflo, The distance of a symmetric space to I$”, in Banach Spaces of Analytic
Functions, Lecture Notes, 604, Springer-Verlag, 1977.

5. A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear
spaces, Proc, Nat. Acad. Sci. U.S.A. 36 (1950), 192-197.

6. T. Figiel, J. Lindenstrauss and V. Milman, The dimension of almost spherical sections of
convex bodies, Acta Math. 139 (1977), 53-94.

7. T. Figiel and N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach
spaces, Israel J. Math. 33 (1979), 155-171.

8. T. Figiel and W. B. Johnson, Large subspaces of 12 and estimates of the Gordon-Lewis
constants, Israel J. Math. 37 (1980), 92-112.

9. D. J. H. Garling and Y. Gordon, Relations between some constants associated with finite
dimensional Banach spaces, Israel J. Math. 9 (1971), 346-361.

10. V.I. Gurarii, M. 1. Kadee and V. 1. Masaev, Distances between finite-dimensional analogs of
the L,-spaces, Mat. Sb. 70 (112) (1966), 481-489 (Russian).

11. V. 1. Gurarii, M. I. Kadee and V. I. Masaev, Dependence of certain properties of Minkowski
spaces on asymmetry, Mat. Sb. 71 (113) (1966), 24-29 (Russian).

12. F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary
Volume, Interscience, New York, 1948, pp. 187-204.

13. J. P. Kahane, Some Random Series of Functions, Heath, 1968.



Vol. 39, 1981 DISTANCE BETWEEN BANACH SPACES 15

14. B. S. Kashin, Diameters of some finite-dimensional sets and classes of smooth functions
(Russian), Izv. Akad. Nauk SSSR, Ser. Math. 41 (1977), 334-351.

15. H. Konig, J. Retherford and N. Tomczak-Jaegermann, On the eigenvalues of (p, 2)-summing
operators, J. Functional Analysis 37 (1980), 88-126.

16. D. R. Lewis, Ellipsoids defined by Banach ideal norms, Mathematika 26 (1979), 18-29.

17. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Volume II, Springer-Verlag,
Berlin-Heidelberg-New York, 1979.

18. M. B. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis,
Center for Statistics and Probability, Northwestern University, No. 44, 1980.

19. J. Mela, Mesures ¢ -idempotentes de norme bornée, preprint.

20. A. Pelczynski, A characterization of Hilbert~Schmidt operators, Studia Math. 28 (1966/7),
355-360.

21. A. Pietsch, Operator Ideals, Berlin, 1979.

22. G. Pisier, Sur les espaces de Banach K-convexes, Seminaire d’Analyse Fonctionelle, Ecole
Polytechnique, 1979-80.

23. G. Pisier, Un théoréme sur les opérateurs linéaires entre espaces de Banach qui se factorisent
par un espace de Hilbert, Ann. Sci. Ecole Norm. Sup. 13 (1980), 23-43.

24, W. Stromquist, The maximum distance between two dimensional spaces, Math. Scand., to
appear.

25. S. T. Szarek, On Kashin’s almost Euclidean orthogonal decomposition of 17 Bull. Acad.
Polon. Sci. 26 (1978).

26. N. Tomczak-Jaegermann, The Banach—Mazur distance between the trace classes C;, Proc.
Amer. Math. Soc. 72 (1978), 305-308.

27. N. Tomczak-Jaegermann, Computing 2-summing norms with few vectors, Ark. Mat. 17
(1979), 273-279.

28. N. Tomczak-Jaecgermann, On the Banach—Mazur distance between symmetric spaces. Bull.
Acad. Sci. Polon 27 (1979), 273-276.

OHIO STATE UNIVERSITY
CoLumsus, OHIO 43210 USA

WAYNE STATE UNIVERSITY
DETROIT, MICHIGAN, USA
AND

TEL Aviv UNIVERSITY
RAMAT Aviv, ISRAEL

OHIO STATE UNIVERSITY
CoLumMBus, OHIO 43210 USA
AND

UNIVERSITY OF WARSAW
WARsSAw, POLAND



